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ABSTRACT

i . -
) //> . ~ P
{

Expected Utility
Ris< Aversion .

—He- considergnonlinear programming problems with stochastic constraints.
The Lagrangian corresponding to such problems has a stochastic part, which
in this work is replaced by its certainty equivalent (in the sense of expected
utility theory). It is shown that the deterministic surrogate problem thus
obtained, contains a penalty function which penalized violation of the con-
straints in the mean. The dual problem is studied (for problems with sto-
chastic righthand sides in the constraints) and a comprehensive duality theory
is developed by introducing a new certainty equivalent concept, which possesses,
for arbitrary utility functions, some of the properties that the classical cer-
tainty equivalent retains only for the exponential utility.
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1. INTRODUCTION

X
N

Pd

Consider the non-linear programming problem

(P) inf g (x)

s.t gi(x,b)<0 i€er=1{1,...,m}

where x € R" is the decision vector; b E]Rk

is a given fixed
n n k .
) vector of parameters, go:IR +IR and g;: R xIR" +R are given
real-valued functions. We will sometimes use also the vector nota-

tion g(x,b) = (gl(x,b),...,gm(x,b))T. Let the feasible set be

denoted hy:
S = {x: gi(x,b) <0 Vié€I}

A fundamental approach to solve (P) is to replace it by an

unconstrained problem of the form:

inf{go(x)'+ P(x)}

where P(x) is a penalty function prescribing a "high cost" for

violation of the constraints (see e.g., Fiacco and McCormick [1968],

i ks

s Luenberger [1973]).

f% An ideal penalty function for problem (P) is:
SO

%

> 0 if x €58

. P(x) =

J! +o  otherwise

- In fact such a penalty is implicitly embedded in the Lagrangian
;j associated with problem (P):

|

&

L,y = gy () + ¥ g(x,b)

N
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Indeed, (P) can be reformulated as a saddle-function problem:

inf sup L _(x,y) (1)
x€ERM y20 e .

which is clearly equivalent to the unconstrained optimization problem:

inf{go(x) + P(x)} Q)
x -
where
T
P(x) = sup y'g(x,b) . (3)
y20

Since the supremum is equal to zero if x € S, and to infinity if

x €S, P(x), as defined in (3), is an ideal penalty for problem (P).

Assume now, and henceforth in this paper, that the parameter b

is a random vector, with known distribution function Fb’ and
support B C:Rk. Problem (P} will be now referred to as Stochastic
Program (SP). The penalty function, just defined in (3), is now
the solution of a (linear) programming problem with a stochastic

objective function. For such problems the classical economic theory

approach of decision under uncertainty, is to replace the stochastic
objective function by its expected utility Eu(yTg(x,b)), where u

is a Von- Neumann-Morgenstern utility function, and E denotes the
expectation operator with respect to b. Adopting this approach here,
we replace the stochastic objective function yTg(x,b) by its

- T
certainty equivalent u 1Eu(y g(x,b)); thus replacing the penalty

function (3) by:

P,(x) = sup u'lEu(yTg(x,b)) (%)
y20

-1 . .
where u is the inverse of u.

LY




TR Y U WTET R o U N WITTET T TN Y W RS
i cas el e ey e Revt et Bd e Suit)
Lt 2 g a i 0 wibEE A SC AN BEA

| iy e "B e Bt o Y0 B 4 Y
.

el

-3~

;|3

K

The use of u_lEU(°) in (4), rather than Eu(-), is appropriate

RAARI
Sl

since in (2) we must add terms with comparable units (not $§ + utiles).

r

Using the u-penalty (4) in problem (2), the stochastic program (SP)

- “‘r
LI §

is thus replaced by what we will call the Certainty Equivalent Primal

problem:

- - e e -
. T

* et T
AP

(CE-P) inf{go(x) + P, (x)}
X

L I

ST
‘. ot ~ 1] .
e sttt

1

Lol S 8

In the first part of this paper we study problem (CE-P) and

show its relevance as a penalty approach to treat programming problems
with nonlinear stochastic constraints. A related approach for the

» case of Stochastic Linear programs is given in Ben-Tal and Teboulle

(1984]. The study of (CE-P) relies on the propertics of the u-penalty
Pu(x), and these will be derived in §4 wusing prcliminary results
from the two preceding sections: Section 2, which summarizes some
basic facts from utility theory, and Section 3, in which we prove a

convexity result on the certainty equivalent functional:

v(y) = u'lEu(yTZ) .

}?: The latter result is needed to demonstrate that P,, given in (4), is
EZ: the optimal value of a concave program.
b=

NCI In the deterministic case, the representation of (P) as the saddle
function problem (1), is also the source of obtaining a dual problem

associated with (P), namely:

K}_
5 (D) sup infl, (x,¥)
- y20 x

In the stochastic case, it is then natural to study the nature of

the dual problem corresponding to (CE-P). This will be carried out

...........
.........................

.....
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in the second part of the paper ( § 5-8) for the important special

case of problems with stochastic righthand side:

(SP-RHS) inf{go(x): g(x) = b}

This question was addressed recently, for exponential utilities, in
Ben-Tal [1984]. It was shown there that the dual problem of (CE-P)

consists of maximizing the certainty equivalent of the Lagrangian’

dual function:

hy (y) = infLy(x,y) ,

b
i.e., the dual problem is
-1

(CE-D) max u Eu(hb(y))

>0
This result is recovered here in Section S. However, for arbitrary
utilities, such a duality result does not hold; this is due mainly
to the non-additivity of the certainty equivalent for non-exponential

utilities. Therefore, we suggest, in Section 6 of this paper, a new

type of a certainty equivalent functional, which possesses, for

arbitrary utilities, many of the properties that the classical certainty

equivalent possesses only for exponential utilities. The appropriate-

ness of the new certainty equivalent in defining a corresponding
u-penalty function, and its use in treating stochastic programs is
discussed in Section 7. A complete duality theory for (CE-P) is

then obtained in Section 8.

- For the special role of exponential utility in economic analysis
see e.g., Bamberg and Spremann [1981].
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2. SOME PRELIMINARIES ON UTILITY FUNCTIONS

In their classical work, von-Neumann and Morgenstern [1947] have
developed a set of axioms concerning preferences over probability
distributions. Under these axioms, a random variable X 1is preferred
against the random variable Y 1if and only if there exists a real

valued function u, called a utility function, unique up to a monotone

increasing affine transformation, such that Eu(X) 2 Eu(Y), where
E denotes the mathematical expectation. A decision maker is called

risk averter if E(X) is preferred against X for all random variables

X, i.e.,
u{E(X)] & Eu[X]

The latter is the Jensen inequality for u(+), and therefore equivalent
to the concavity of the utility function u. Throughout this paper

we shall deal with the class U of strictly increasing concave utilities.
Further, denotg by Uk the class of strictly increasing, strictly

concave; k-times continuously differentiable functions, more precisely:
U, = {ue ¢t iu >0andu strictly concave}

Uk={u€C(k):u‘>0 and u" < 0} k=22 .

Following Pratt [1964] and Arrow [1971], the measure of local risk

aversion at the point t € R for u€ U,, is defined by:

r(t) = - E;%%% . (5)

Three basic properties of r(t) for u € U2 are summarized below:
a) r(t) is well-defined and r(t) >0 Vt €R .

b) r(t) 1is invariant with respect to any positive affine trans-

formation of the utility function wu(t)
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c¢) Given r(t), the utility function u(t) is uniquely determined
(up to a positive affine transformation) by:
t s
u(t) = j exp(- J r(0)do)ds
a

1

For a given u € U, the inverse function u - exists and is

a strictly increasing convex function. The Certainty Equivalent

of a random variable X is defined by

C(xX) = u tEu(x)
It is the sure amount for which the decision maker remains indifferent
to a gamble yielding X, i.e.,

u(C(X)) = Eu(X)

The following properties of the certainty equivalent are immediate

consequences of its definition.

Proposition 1 Let X be a random variable and u € U then:

(a) Cw) =w vw ER .
(b) C(X) 1is invariant to affine transformation in u.
(¢) C(X) SE[X] with equality for all X if and only if u 1is linear.

a

Looking back to the definition of the u-penalty function:

P (x) = suplC(yTg(x,0)) = v Euly g(x,0)]) (4) ‘
y20

we see from Proposition 1 that it possesses two desirable features:
(a) In the case where b is a deterministic vector of parameters,
the original problem (P) is recovered from (CE-P) ;

(b) The penalty function is invariant to affine transformations of u.

o

sttt et carats tatan ettt aan e e el et e p e ca” W e W 2t a
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There is, however, some difficulty associated with the objective

function in (4):

Q) & clyTetx,p)] = uleu (v g(x,b))

in term of which Pu is computed. As a function of vy, Q(x;y) is

. . . -1 .
a convex increasing transformation (u ) of the concave function

Etz(yTg(x,b), thus in general it is not guaranteed that Q(x;-) is
concave.

In the next section we characterized the utilities for which
y = Q(x;y) 1is a concave function, for any random vector b. The
characterization is given in term of the Arrow-Pratt risk aversion

measure T.

3. CONCAVITY OF THE CERTAINTY EQUIVALENCE FUNCTIONAL

Let Z be a random vector in Rm, and for u € U define the

certainty equivalence functional by

1

viy) = u tEu (yT2)

We further assume that EIJ(YTZ) < 4= Yy € R".

Let ¢ =u 1, we next define a function of two variables h, which plays a

central role in the proof of the main result of this section:

¢(x1)-¢(x;)
h(x;.x,) ___3TT;;7__

Note that since &' > O, h(xl,xz) is well defined for all x,.x., 1in

172

the range of u and is a twice continuously differentiable function

for u € U3. The convexity of h(xl.xz) will be now characterized

. . e e e e e a . . e .
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by showing that its Hessian matrix 72h s positive semi-definite,
i.e.,

v d € R aTy2hd > 0.

Lemma 1 - Let u € U3, then the function h(xl,xz) is convex if

and only if is concave.

1
r(t)

Proof: The Hessian matrix of h will be positive semi-definite if

and only if:
.2 2 . >.
D(x,y):= x h11-+y hzz-ﬁ2xyh12 0 for any x,y not both zero
2
where h.. = P i,j=1,2.

ij axiaxj

Computing the partial derivatives of h(xl,xz) we obtain:

" (xy) ¢ (x)9"(x5)
byt vy 0 Mt T oo
2 $'°(x,)

=2
1}

wl
20"2(x,) - 9" (x,)9'(x,) }

Lt

Now hll > 0 since u € U2’ hence D(x,y) <can be rewritten as

2
h,.y\ 2 h
12 12\ 2
D(x,y) = h (x+ ) +(h - — )y ,
11 hiy 22 A

~and is non-negative for all (x,y) if and only if

hl,
it Mgt e >0 (6)

In terms of ¢(t), the risk aversion function defined in (5) is:

Loty
r(t) -1 .
[+ "(v)]
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By the inverse function theorem we have:

1 ¢"(t)
u'fe(t)] = ;ou'[e(t)] =t
P $13(t)
w2 - "t [}
wrta(t)] = ST - 9 ét)qs (t)
(¢' (1))
and hence:
" t e - w2
rlo(n)] = 8L pipp(ey) = EL(RIENICE) - 2000 (X)

$14(t)

Now, put t 4 ¢(x1) and t, 4 ¢(x2); computing Ah, and using the
fact that ¢' > 0, we obtain after some algebraic manipulations that

(6) is equivalent to:
rP(t)) Sr(t)r(ty) - (£-t)T(E)T(t,) - (7)

Lividing (7) by r(tl)rz(tz), which is strictly positive, we have :

r'(tz)

't)———
1 72 rz(tz)

1 1
<
r(tl) r(tz)

-(t

and this is exactly the gradient inequality for 1/r(t), which

characterizes its concavity.

Theorem 1: Let u € U3,then the function:

viy) = ulEu (yT2)

1

is concave.
r(t) ¢

is concave for any random vector Z, if and only if

Pronof:
v(y) 1is concave if and only if it satisfies the gradient inequality,

-1
i.e.,using again the notation ¢ = u , and observing that ¢' > O:

R T T L TR TR SRt A SR Sl T S e ¥
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Clearly then ¢'(p) SO0, i.e., y is decreasing; moreover u' > 0
and &(p) 1is strictly increasing (the composition of two strictly
decreasing functions) and therefore a'(p) > 0, and thus by (21)
v'" > 0 showing that ¥ 1is strictly convex.

Finally, since u'(0) =1, a(l) = 0 and thus:

¥(1) = u(0) = 0.
0

Let Z be a random vector in mW and for u € UN we define

now the New Certainty Equivalent (NCE) functional by w: R" > R

w(y) = sup {n + Eu(y'z-m} . (22)
n€ER

The next result shows that w(y) 1is a concave function for any

utility function u € UN(compare with Theorem 1, § 3).

.. . m . . .
Proposition 5 - The function w: R + R defined in (22) is concave

-

for any u € UN and for any random vector Z.

Proof: The function W can be rewritten as:

w(y) = - inf F(n,y) ,
n€R
where F: R x R"™ >R is defined by : F(n,y) = -n - Eu(ytZ-n)

since u 1s concave, it is easily shown that F(n,y) is (jointly)

convex, hence w(y) is concave (see Rockafeller [1974], Theorem 1).

0
We shall derive now an explicit form tor w(y).
Proposition 6 - For any u € UW’
- -
wiy) = n(y) + Eu(y 2-"1y)) (25)




=22~

we get:

M-Eu (X-n) 2 (M-u(L-n))Pr{M-u(X-n) 2 M-u(L-n)} . (20)

Since u 1t strictly increasing:

PriM-u(X-n) = M-u(L-n)} = PIX< L} = p , and (20) becomes

n+ Eu(X-n) S<n + pu(L-n) + M(1l-p)
thus

S(X) SM(1-p) + sup {n + pu(L-n)}
n€R

Differentiating the supremand with respect to n and equating to zero:
1
u'(L-n) =—
P
This equation indeed has a solution n for all O < p S 1; to verify this
note that {u'(0) = 1, u' is decreasing, and assumption A2} imply
Range u' 2 [1,4+)2 {-;—}, v 0<p<l.
in fact, the optimal n is
-1,1
n=1L - (U') (—)1
P
where (u')-1 denotes the inverse of u'. Inequality (19) thus follows.

Now Y(p) can be written as:

Y(p) = M-p(M-u(a(p))) - a(p)

. -1.1
with a(p) = (u') (5) , and the expression for its derivative is

v'(p) = -M-u(a(p))) +a'(p)(pu' (@(p)) - 1).

Note that in the latter the second term is zero since u'(a(p))= 1 SO
p )
vt(p) = -(M-u(a(p)))
V() = a'(plu'(alp)) (21)
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The next result gives an upper bound for S(X), which will be useful in
proving later theorems 6,7, and 8. These results need additional assumptions
on the utility function u:(a,b) > R (-» € a < b € +x)
Al. u is bounded above:
1 M: u(t) SM V t €(a,b)

(*) ' =
A2. lim u'(t) =
t+a

Note that A2 holds if u is essentially smooth in (a,b) (see e.g.

Rockafeller [1970] pg. 251); in particular it holds for all the classical

utilities (log, power and exponential utilities). We denote the class of

utilities u € UN satisfying Al and A2 by US.

Lemma 2: Let u € qs and let L > X in Denote

p = Pr(X S L)
then

S(X) Sw(p) +1L (19)
where

b(p) = M(L-p) + pu((") @) - )P

Moreover ¢ is a strictly convex decreasing function in (0,1], with

v(1) =

Proof: Let y(t) = M-u(t-n) and k = M-u(L-n), fhen, since
8 .
u€U; «v(-)>0 and k>0. Applying the general Tchebychef

Inequality (see e.g., Mood et al. [1974]):

E(y(X)) 2 k Pr(y(X) > k)

(*) We acknowledge here the contribution of the anonymous referee in
pointing out the neccssity of this assumption.

IR I R B P
SRS TR, VPP . Wy SRR I T TP U ST




| nan e Bandk “Bdit il "t 3

~

e S T gV SO W)

T T TR T T T TN T LT M. e e & T w
LAYR e ien R an S sas aME S 3a-bi R A Sk bl Lad S e b dtih & o 8 e & Aee a B A A S S D M A adi ol Cal

-20-

Proof: (a) By definition, S(w) = sup {n + u(w-n)}, equating
' n€ER
the derivative of the supremand to zero we obtain u'(w-n) = 1,

hence since u'(0) = 1 and u' 1is strictly decreasing the supremum
is attained at n = w and its value is then SW) = w.

(b) By (17) we have:

S(X) =sup {n + Eu(X-n)} < sup {n + E(X-n)} = E(X)
nE]R nER

(¢) For any n € R we have X-n > X in™™ fhen the result follows

in
from (a).

(d) By definition

S(X+w) =sup {n + Eu(X+w-n) ,
n€ER

hence with n = n-w, one obtains:

S(X+w) = sup {n+w+Eu(X-n)} = w + S(X).
neER .

-t

(e) Let u(t) = 1l-e be a normalized utility functiom,. then

S(X) = sup {n+1-Ee'(x'”)}, which by simple calculus
n€R

gives S(X) =-logEe'x. On the other hand, since u € UN'

u'1 exists and a little algebra shows that C(X) = u'lEu(X) =
= -logEe X, hence for exponential utility C(X) = S(X).
' a

Example: Let X be a random variable with xmax € 1. Then for the

(normalized) quadratic utility u(t) =t - t2/t , (t £1) a direct com-
putation of (18) yields:

S(X) = u - 30

where U is the mean of X, and a? its variance. For this case

the classical certainty equivalent is

CX) =1 - /(u-1)% + o2

-~ -
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Al NERP LG L

Therefore, the new certainty equivalent can be viewed as an integra-

et

tion of the expected utility principle and the two stage approach
For the latter, see Dantzig [1955], Dantzig and Madansky [1961],
Walkup and Wets [1967], Mangasarian and Rosen [1964] and the recent
i surveys of Dempster [1980j, Kall [1982] and Wets [1983].

In the sequel we frequently interchange integration and differ-

entiation, e.g.: E%- Eu(t+X) = E E%— u(t+X). For this to hold it

i suffices to assume that u'(.) is continuous and Eu'(.) < @ , See
Bourbaki [1958], pg. 99.
].

Let the support of the random variable X» be [xminfxmax

The supremum in (18) is attained at the point n" satisfying

Eu'(X-n") = 1, and since u' is decreasing then: 13> u'(x_, -

X

and 1< u'(x_. -n*), hence together with u'(0) = 1 this shows

min

) * . . .

i that n € [x . ,x___]. I.. particular, for random variables with
min’“max :

compact support, the supremum in (18) is attained. The appropriateness

of S(X) as a certainty equivalent measure is further supported by

! its basic properties which are collected below.

.)

5 Theorem 4 - For any utility function u € UN’ a random variable
Ny X and a constant w:

(a) [Constancy] S(w) = w.
(b) [Risk aversion] §(X) < E(X),V nondegenerate random variables X.
(c) [Lower bound] If X is bounded below by «x . then

i min
S(X) = Xin®
(d) [Additivity] S(X+w) = S(X) + w

(e) [Exponential-case] For the (Normalized) exponential utility

function, the new certainty equivalent coincides with the

ht IS

classical, i.e.,

S(X) = C(X).

ORY Wanv

. .- . .
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P A TR ST R R TR VN . S o SO
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Throughout the rest of this paper we will consider the class

UN of normalized utilities:

u EUN = {u € Uy: u(0) = 0, u'(0) = 1}

Note that for every u € UN:

u(x) 20 for x2 0 since u is increasing (16)
u(x) <x for all x # 0 since u is strictly (7N
. concave,

thus a normalized utility can be interpreted as a discount function,
and hence, the '"'present value'" of a future (uncertain} income Y is

Eu(Y).

Suppose that the decision maker, expecting a future (uncertain)
income of X dollars, can consume part of X at present. If he
chooses to consume n dollars, the resulting present value of X
is then n+ Eu (X-n). Thus the sure (present) value of X, denoted
S(X) 1is the result of an optimal allocation of X between present
and future consumption, i.e.,

S(X) = sup {n+ Eu(X-m} (18)
n€R

which is our new certainty equivalent. In fact, S(X) .can be

written alternatively as:

S(X) = sup {n + E sup {u(y): n+y<X}}
neER y

and thus it is the value resulting from applying a two-stage approach

("here and now'") to the stochastic program:

sup {n: n S X}




-17-

Ben-Tal [1984]). In particular, for the important special case of
stochastic rhs programs, we recover here the result showing that

the dual problem of (CE-P) is equivalent to Expected utility maximiza-

tion of the classical Lagrangian dual function of (SP). In the

rest of the paper we aim at generalizing this duality relation for
X sy stes . . L ]
arbitrary utilities. For this purpose we introduce in the next

section, a new type of certainty equivalence.

6. THE NEW CERTAINTY EQUIVALENT

In this section we introduce a new-certainty equivalent in terms
of which a new u-penalty ﬂu(x) is constructed, maintaining similar
properties to Pu(x), as well as producing duality results for (RHS)
programs for general utilities. The penalty properties of Pu(x)
rely essentially on the following basic properties of C(.): (see

Proposition 1, Section 2)

(a) Cw) = w VY constant w

(b) C(X) = E(X) for any random variable X and u € U.

On the other hand general duality results for the (RHS) case rely heavily

on the additivity property of C(°), (Proposition 4)

(¢) C(X+w) = C(X) +w V fixed w

which is valid, for arbitrary random variable X, only for exponential

utilities.

The three properties (a)-(¢) will serve as guidelines to define

our new certainty equivalent.
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deterministic primal (CE-P) is:

T ok
inf {g (x) +p [ PI(x)}
X k=1

Procf: The result follows immediately from the fact that in the
case of exponential utility, the certainty equivalent in terms of .

which Pu is defined, is additive (see Bamberg and Spremann [1981],

Theorem 4).
a

The certainty equivalent Ca defined in (12) has the following

property of additivity:

Proposition 4: Let u be an exponential utility function, then

for any constant w € R and any random variable X

Cd(x-rw) = CQ(X) + W,

Consider now the saddle function:

T
K(x,y) = g (x) - glog Ee~0Y 8(x,b)

Using the u-penalty, given in (13), we see that the deterministic

primal (CE-P) becomes for exponential utility

(CE-P)  inf sup K(x,y) ' (14)
x y30

Recalling the definition of the Lagrangian Lb(x,y) for the original

problem (SP), and using Proposition 4, (14) is easily shown to be:

(CE-P)  inf sup u 'Eu L (x.y) (15)
b x y20
-
5 The u-penalty (13) for an exponential utility, and the resulting
[~
Y‘ min-max representation (15) of (CE-P), were studied recently by
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gives the following nonsmooth optimization problem:

m
AP) inf (g () + = 1 —— [mex(0,m; 00)1%)
o i=1 ai(x)

S. THE CASE OF EXPONENTIAL UTILITY

In this section we confine attention to the important special
class of constant risk aversion utility functions, i.e., utilities

with r(t) = 1. a > 0. This corresponds exactly (up to a positive
b P P

. . . . -at
affine transformation) to exponential functions, u(t) = -e .

The associated certainty equivalent, for a random X 1is then:

_ 1 -aX
Ca(X) = - 5 log Ee Va > 0 (12)

and the corresponding u-penalty function is given by:

Px) = SupC £ 800D (13)

The next result shows that for (SP) with independent constraints (see
Section 4, Definition 1), the joint constraints penalty Pu(x)
defined in (4) is additive, i.e., the sum of the penalties

{Pt(x): k € I} for individual constraints.
Theorem 3: Let u be an exponential utility function

u(t) = a - be /P (p>0,b>0, a€R)

For independent constraints, P 1is given by:

Tk
P (x) = kzl P, (x)
-ykgk(x’bk)

p sup {;logEe } and then the corresponding
Y20

where Pt(x)

ALY S --‘.-_, e .~-‘ - !‘." " .‘-_.;‘._- Y . Cete L SN
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Using the approximation in (CE-P), one obtains an
approximate Problem (AP):
(AP) i:f {go(x) + Pu(x)}

This representation can be further simplifed for uncorrelated cons-

traints and in particular for independent constraints.

Definition 1: We say that {gi(x,b)=< 0 i € I} are uncorrelated

[independent] constraints if the components {bi}ieI are un-

correlated (independent] random variables and if for each i, the
i-th constraint depends only on -bi, i.e., k =m and gi(x,b)==gi(x,bi)

Vi € I. In this case the variance covariance matrix is:

oi(x) i=j
tij(X)=
0 i#j

where ci(x) is the variance of g; (x,b;).

The second order approximation of the u-penalty reduces to

m
5 1
P (x) =sup ) [y.m(x) - =r y2a2(x)]
u y20 isl .1 i 2 0’1l

3" where mi(x) = Eb.gi(x,bi). The latter is a maximization of a

};} separable function, which can be carried out analytically, to obtain:

={i Proposition 3: For (SP) with uncorrelated constraints, a second

°

E“f order approximation of Pu(x) is

h‘:' - m

l". -~ 1 .

[ P (x) = ¥ L [max(O,m.(x);]2

[‘_ L u Zro i=1 02 ( ) 1

F'_'-‘ i X a

- Thus, for uncorrelated constraints, an explicit representation of (AP)
L-'-
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If we define the u-penalty for the k-th constraint in the natural

way as:

._ .
PX() = sup ulEu (g, (x,0)) (11)
¥, 20

Sy

we get the following monotonicity property:

Proposition 2: If x1 is less feasible than xz, for the k-th

r'5d
".. v

v
e,
B
. .I'
. MRS
e

r

T
’

constraint, then

y gy o 4
'f

I
»
)

e

Y"'
Jod

k 1 k, 2
Pa(x) 2 PL(x%) -

We derive now quadratic approximation for the u-penalty function

Pu(x), for u € Uz. First denote:

[}

m(x)

z(x)

Eg(x,b)

cov(g(x,b))

It can be showin by direct differentiation of the certainty equivalent

functional

viy) = ulEu (yTg(x,b))

that
vw(0) = m(x) '
¥2y(0) = -T_-L(x) with r_:= - £0) .4
0 RO (1)) '

Moreover, we know that v(0) = 0, hence a second order Taylor-

3

2

?}j . expression of v(y) in (4) yields the following approximation of Pu(x):
°

o a 1

Ex P (x) = sup (y'm(x) - 7 Ty E(x)y).

.- y20

3

l Note that, since £(x) 1is positive semi-definite, the approximate

u-penalty Pu(x) is the optimal value of a concave quadratic program

with only nonnegativity constraints.

-’ . - - - - B . - -
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Then we have Qk(x,O) = 0 and using the chain rule, with ut being continuous:

3
<2 Q(x,y )] = Eg, (x,b) > 0 .
ayk k Yk=0 k

Hence, there exists Y 0 such that:

Q (x,¥,) > Q (x,0) = 0 .

Noting that P (x) = sup aQ(x,y) & sup Q (x,¥,) (10)
Osy €R 0sy 1 ER

and using the previous inequality, it follows that Pu(x) > 0 which

proves the second part of (i).

(ii) Let gk(x) >0 for some k € I. By (10) we have

P, (x) # sup ulEu (v 8, (x:b))
¥,.20

Since u 1is increasing and 0 < gk(x)=< gy (x,b), the above inequality
implies that
-1
P,(x) Zsup u'Eu (Y8 (X)) = sup Y8y (%)
ykzo ykzo

and hence the result (ii) follows.
a

The first part of the theorem demonstrates that Pu(x) is a

penalty function for violation of the constraints in the mean. The

second part shows that Pu has the desiratle property of excluding
solutions which are not feasible in (SP), for any realization of b,
since for those Pu(x) a o,

We say that xl is less feasible than xz, for the k-th

constraint, if:

g (x',0) > g, (x*,b) Vb EB .

Note that for stochastic right hand side constraints g, (x) > LI

this simply means gk(xl) <8k(xz)

} P T e e e e e e T
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4. PROPERTIES OF THE u-PENALTY

In this section we derive the basic properties of the u-penalty
Pu’ defined in the introduction (see eq. (4)), discuss the appropriate-
ness of using it for programming problems with stochastic constraints,

and derive an approximate simple expression for its computation.

Theorem 2 For any u € Ul’ the u-penalty function
-1 T
Py(x) = sup u "Eu (y g(x,b))

y20

satisfies:
0 if Eg(x,b) <0

(i) P,(x) =

positive if Eg(x,b) €0
(ii) Pu(x) = if for some k gk(x) = igg gk(x,b) >0

‘Proof: (i) Let Q(x,y) = u-lEtx(yIé(x,b)) then

P (x) = sup Q(x,y) #Q(x,0) =0 (9)
y20

Since u € U;, by Jensen inequality (see Proposition 1 (¢)):

T
Q(x,y) <y Eg(x,b)

with equality for y = 0, and so
T
P,(x) = sup Q(x,y) < sup y Eg(x,b)
y20 y20
Now, if Eg(x,b) <0, the last inequality shows that P (x) <0
which together with (9) proves the first part of (i).

Assume now that for some k € I, Egk(x,b) > 0.

Let  Q(x,7)i= Q(X,0,.+.y,,...,0) = u  Eu (v,8, (x,b))

R A T SN S S e U B
T T R ST =, S T e e T el et . LI .
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T T T
9Eu (y'Z) - ¢Eu(x2) ¢ ¢ ( (y-x) Z_> ;  ¥x,y €ER" and Z. (8)
$'Eu (F2) o' (u(x"2))
The latter is equivalent to Jensen inequality for h(tl,tz) with
tl = u(yTZ) and tz = u(xTZ), X,y € Rn, which holds for all 2 1if

and only if h 1is convex. Thus, invoking lemma 1, the proof is

completed.

Remark 1 - The two parameters class of utility function with
hyperbolic absolute risk aversion (HARA) defined by r(t) = thg-,

which is widley used in economics (see e.g., Hammond [1974], Wilson

1
r(t)

[1968]) satisfies triviaily the condition that is concave.

The (HARA) family consists of the following utilities (defined
for t > - 2);
a

e t/b if a

"
(=]
o
hY
o

u(t) =4log(b+t) if a=1

L(at+b)(a'1)/a if a#0, a#1

Tiie first one, corresponding to constant risk aversion r(t) = <§ s

and called accordingly (CRA)-utility function, is of particular

interest and will be studied in Section S.
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A
- where n(y) 1is the unique solution of the equation:

Eu' (yTZ-n(y)) =1, vy €R™ . (24)

; ... [
RV PG
el
. et

Moreover

(1) n(y) (and hence w(y)) is continuously differentiable; |

(i1) n(0) = w(0) = 0; vn(0) = vw(0) = E(Z).

Proof: Let us define the function : R" x R > R by:

LR o4 D N Ty
14,9, P .
[ Vo .

. O .

SRR

v

’
a

y,n) = Eu! (yTZ-n)

Since u € UN’ ¢ (y,n) is continuously differentiable on ij+1.

Now equation (24) i.e. $(y,n) = 1 has a solution n = n(y) for arbitrary

y. This follows since Y(y,n) is continuous in n, Y(y,n) < 1 for n suf-
ficiently small and ¥(y,n) > 1| for n syfficiently large. Moreover since
50 y(y,n) = —Eu"(yTZ—n) > 0, by the implicit function theorem there exists
a unique differentiable solution n = n(y) to the equation ¥(v,n) = l. By thea
definition of w(y), in (22), as an unconstrained concave optimization

problem, w(y) is obtained by equating the derivative of the supremum

to zero, thus (23) is proved.

Now (24) holds for any y € R", thus ¥ (0,n(0)) = u'(-n(0)) =

>
o
..
t-."

then, u' being strictly decreasing with u'(0) =1, we get n(0) =0
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and hence from (23) w(0) = 0. Differentiating (24) with respect

to y, 3zives for any y € R
E((Z-tn(y))u(yTZ-n(y))) = 0 .

Then, for y = 0, using the facts n(0) = 0 and u"(0) < 0, we
have 9n(0) = E(Z). Finally, differentiating (23) with respect to

y we have using (24):

w(y) = E(u' (y'2 - n(y)) (25)

and thus ww(0) = E(Z).

7. A PENALTY FUNCTION INDUCED BY THE NEW CERTAINTY EQUIVALENT

In analogy to the way the u-penalty was constructed in terms
of the classical certainty equivalent (see eq. (4)), the new
certainty equivalent induces the following penalty function:

m(x) = g = ( y
[, (x) = sup S(y g(x,b))=sup sup {n + Eu(y g(x,b) - n)}
y>0 y20 n€R

This function possesses the same properties as Pu’ indeed from

Theorem 4 (a), we see immediately that if b 1is deterministic then:

0 g(x,b) < 0
ﬂu(x) =

+ otherwise

thus it is an ideal penalty for the original deterministic program
(P): inf{go(x): g(x,b) < 0} . In the stochastic case it can be

shown in analogy with Theorem 2 that :

.........

............
......................

.....
.....
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Theorem 5 - The‘function ﬂu satisfies :
(0 if Eg(x,b) <0
nu(x) = { positive and finite, if Eg(x,b) €0
L if for some k: gk(x) >0

Proof: The prootf follows step by step the proof of Theorem 2 since

the latter uses properties of C(x) which are shared by S(x),

see Theorem 4.

o

;.-1 Theorem 5 shows that ﬂh is a penalty function for violation

b N

Eis of constraints in the mean, and it automatically excludes solutions
[ to the stochastic program (SP) which are not feasible for all

-

;}}_ realizations of b. Therefore a suitable deterministic surrogate

problem for (SP) is:

(NCE-P) 1nf {g (x) + ﬂ (x)} .
x €R”

From the additivity of the new certainty equivalent (Theorem 4 (d)):

1nf (g (x) + T (x)} = inf sup S(g (x) + y g(x,b))
x y20
hence (NCE-P) can be written as a minimax problem :

(NCE-P) inf sup S(L,(x,¥))

,' X y>0

. where Lb is the Lagrangian of problem (SP).

- We now derive an upper bound for the penalty nu in terms of the

o probability of satisfying the constraints: Pr(g(x,b) < 0).

'..: € A
r~.; Theorem 6 - Let u UN . For every x such that

L

s p(x) = Pr{g(x,b) <0} > 0 , one has:

[

LA

:_ .
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m,(x) < wp(x)) (27)

where y(p) is given in Lemma 2.

Proof: Fix x such that p(x) > 0. Recall that:

n,(x) = sup S(y'g(x,b))
y:0

. T
Applying Lemma 2 with X =y g(x,b) for some non zero y>0, and L = 0,
we get
T
S(y g(x,b)) < w(py) (28)

where here Py = Py(x) = Pr(yTg(x,b) < 0). Hence from (28)

n <sup V(P 29
0 (X) ;:g (P (29)

Moreover, since ¥ 1is decreasing (see Lemma 2):

sup ¥(P_ )€ ¥(inf Pr(yTg(x,b) <0)). (30)
y20 yz0

But for all U0 # y 2 0: Pr(yTg(x,b) < 0) 2 Pr(g(x,b) <0), and hence,

using again the fact that V¥ 1is decreasing,

v(inf Pry g(x,b) < 0)) <y(Pr(g(x,b) <0)
y=20

which combined with (29) and (30) proves the inequality (27).

a
Remark 2: Using the properties of the function y(.) from Lemma 2,
it is interesting to note that the larger is the probability of
satisfying the constraints, the smaller is the ''upper-bound penalty"

p(p(x)).

We derive now, quadratic approximation for the penalty function

nu(x). We use the same notations as given in Section 4. Let us
denote by wx(y) the NCE-functional corresponding to the random

-
[ vector Z = g(x,b). From the Proposition 6, for u € Uy the NCE
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functional is given by:

W) =0 () + Eu(y'g(x,b) - n_()) (23)

with n (y) uniquely determined by Eu' (y g(x,b) - n ) = L.

A direct differentiation of (23) withArespect to y gives:

[}

wa(O) m(x)

[}

Vzwx«» u"(0)r(x) = - rot(x)

(since here u'(0) =1, r_ = - :TEg§ = - u(0)).

Moreover, we know that wx(O) = 0, hence a second order Taylor

expansion of wx(y) is:
- - JT 1 T
w ) =ymlx) - 31 Y IX)y

and therefore an approximation of ﬂu(x) is given as the optimal

value of the concave quadratic program:

~ T T
M (x) = sup {y m(x) - %-r y £(x)y} .
u o

Y20
For a quadratic utility, the apprbximation is exact; this can be
verified by a direct calculation. The approximation nu(x),
coincides with the approximate P (x) of the u-penalty given in

Section 4. In particular, similar results concerning uncorrelated

constraints (see Proposition 3) can be recovered here, i.e.:

A = A 1 —L (nax(0,m, ()31
u “To i=1 cf(x) t
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8. DUALITY RESULTS FOR STOCHASTIC RHS PROGRAMS

In this section we treat the special case of the general

stochastic programming problem (SP):
(SP-RHS) inf{g,(x): g (x) >bi’ i€er=1,...,m}

which is simply obtained from (SP) with g(x,b) = b-g(x).
For each i €I, 91 will denote the infinum support of bi'
Using the new certainty equivalent S, the penalty function ﬂu
is given here by:
T
M () = sup S{y (b-g(x)))
y30
T
However, by the additivity of S, since y g(x) 1is not random,
we obtain the following representation for n,
T
m,(x) = sup {w(y) -y g(x)}
y20

where as in Section 6 :

w(y) = S('b) = sup {n + Eu (¥ b -n)}
n €R

The corresponding deterministic primal (NCE-P): inf {go(x)+r1u(x)}
is then:
(NCE-P) inf {go(x) + sup {w(y) - yTg(x)}}
b4 y20
Assume from now on that go(x) is convex, and that {gi(x)}i€I

are concave functions, so (SP-RHS) is a convex program. This

implies that ﬂu(x) is convex and so (NCE-P) 1is a convex program.

In terms of the saddle function:

T ,
K(x,y) = g (x) +w(y) - y g(x) (31)
1
T T T N P L P (NP L I, AL A oy
N e e Y ST “.'\.-'“'.h:.'.?."}:}i{'.r R R AN
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it can be written as:

, '; 'l "l‘ .1A ‘l 4
Pt

To T Te Th Te T -
Tt )
P s’
ot e e e
R R RS

(NCE-P) inf sup K(x,y)
x y30

We define the Dual problem corresponding to (NCE-P) by

(NCE-D) sup inf K(x,y)
Y20 x

_'._..‘
[
1

DO

The main result concerning the dual pair (NCE-P) and (NCE-D) is

‘l ’

the validity of a strong duality result:

inf (NCE-P) = max (NCE-D)

This will be proved in Theorem .8. Before we need an additional
limit property of the (one dimensional) NCE function w(y), which
is interesting by itself. A similar property for the classical
certainty equivalent functional v(y), but only for the exponential

utility is given in Bamberg and Spremann [1981].

Theorem 7 - Let X be a random variable, with xmin > ==

denoting the infimum of the support of X, and let u e.U:. Then

lim “’—(yﬂ = x (32)

Yyt mll.'l

Proof: We have to prove that

1in YD) 5 | (33)
y-’+w min
lim 1Q1<x. + € ve > O (34)
y-#“tl! min

For any y > 0, yX-n2y Xpin~ N and since u is increasing,

vr..

o

from the definition of w(y) we get:

o

v 4
e,

w(y) 2 sup {n +uly x_; -M} = S(y x_. )

n €ER min

AT
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= the last i lit
By Theorem 4 (a), S(y xmin) Y Xpin? thus the last inequality

proves (33).

Let € > 0 be fixed, but arbitrary. Applying Lemma 2 to the

random variable yX with L = y(x i €), we have :
= <
wiy) = S(X) Sylxp, * €) +v(p)

where p = Pr(X S xmih + €) > 0. From the latter inequality, (34)

follows immediately.

a
The duality theorem now follows.
Theorem 8 - Let (SP-RHS) be a convex stochastic program and consider
the corresponding deterministic program (NCE-P) for u € U; .
If the following condition holds :
(S) 3x €R™ such that gi(i) >b. viel
I;:E then
m inf (NCE-P) = max (NCE-D) (35)

Ty
a_r
l'l

S AU

Proof: Since go(x) is convex and {gi(x)}iEI are concave, then

r sla
‘.'l‘l‘n

K(*,y) given in (31) is convex for every y = 0. From Proposition 5

, we know that w(y) 1is concave, hence K(x,.) 1is concave. By

e

s
ey

a result of Rockafeller [1964] a sufficient condition for the

s 7
x

validity of (35), for a general convex-concave saddle function K(x,y) is:

oyl
4

T
20#y, >0 such that Yo yK(x,y) 20 (xE€ERM y>0)

Here by Proposition 6, (see eq. (25)):

T K(x,y) = W) - g(x) = E(bu’ (y"b - n(¥)) - g(x)
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thus, we have to show :

Y e

By, >0 such that yf){scbu'(y‘:b -a(y))) -g(x)} >0

VxERm,y>0.

CaTe e

i This is certainly satisfied if:

3%, 3 > 0 such that w(y) =E(bu' (¥'b-n(7))) < g(x) .  (36)

To show that condition (S) implies (36) it suffices to prove that:

inf 5=— w(y) < b i€l (37)
y20 y

For all i € I, let wi(yi) = w(0,0,...,yi,...O) i.e.,

wi(y;) = sup {n + Eu(byy; - n)}
n€R

.

Now,
9
iy . 3 3 .
S mfma—-w(y)< inf Yy wl(y) Vi€l
B ocy ER™ Y3 Ocy; €R Yi
So, in order to prove (37) it suffices to prove that
g inf w!(y.) <b, . (38)
‘. OsyleR 171 -1
But w]!_ is a derivative of a strictly concave function and thus
is strictly decreasing, hence inf W'(y ) = lim  w! (y ).
4 y;20 Y™™
i Moreover, wi(yi) is concave, thus by the gradient inequality
= - Sw, (y.) - y.w!(y.
. 0=w,(0) Sw;(y;) - yw(y,)
5 and then by Theorem 7
]
x
e Ty L L e L e T T T e e T

ORISR .4-} B




. < g i _
lim wi(yi) lim v = 91

which is exactly (38), and the proof is completed.
a
Remark 3 - The regularity condition (S) needed to establish the
strong duality ;esult for the pair of problems (NCE-P) (NCE-D) is
extremely mild; for continuous random variables, if (S) does not
hold, then the feasible set {x: g(x) = b} is empty in probability 1.
]
Our last result gives a concrete interpretation of the dual
problem (NCE-D). Recall that in the deterministic case the Lagrangian

dual of (P) is the concave program: sup [inf Lb(x,y)]. We show here,
y20 X

in the stochastic case, that the dual program (NCE-D) consists of

maximizing the new certainty equivalent of the Lagrangian dual

function.
Theorem 9 - Let (SP-RHS) be a convex stochastic program, and
u € UN . Then the induced deterministic dual (NCE-D) is the concave
program:
(NCE-D) sup S(inf Lb(x,y)) (39)
y20 X

Proof: The dual problem (NCE-D) is given by

(NCE-D) sup inf K(x,y)
y20 x

where K(x,y) 1is defined in (31). Since go(x) -yTg(x) is not

.random, by the additivity property of S(-), (Theorem 4 (d)) K(x,y)

can be rewritten as :
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K(x,y) = S(Ly(x,¥)) (40)

where Lb(x,y) = go(x) + yT(b-g(x)) is the Lagrangian for (SP-RHS).

Thus, in order to prove (39), we need to prove that

inf S(L,(x,b))
b3

S(inf Ly (x,y))
X

Indeed, we have:

S(nf Ly(x,y)) = S(y'b + inf(g (x) - ¥ g(x)))

X
= S(y'b) +)i(nf(g°(x) -yTg(x)) [by Theorem 4 (d)]
x
- ir;f{S(yTb) ¢ () - y'g(x)}
= inf $(y"b + g_(x) - y'g(x)) [by Theorem 4 (4)]
= ilzf S(L,(x,y))

o o S e e T YRR T 7 T T T e e T T T T T L T T L
ORI ST KN
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